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A VERSION OF NON-SMOOTH TRANSFORMATIONS 
FOR ONE-DIMENSIONAl, ELASTIC SYSTEMS 

WITH A PERIODIC STRUCTUREt 

V. N. P I L I P C H U K  and G. A.  S T A R U S H E N K O  

Dnepropetrovsk 

(~ce/vea 5 lu/y 1994) 

The method d ~  in [ 1] of introducing a non-smooth argument by means of special identities is shown to provide an additional 
means of analysing one-dimensional systems with a periodic structure. A modification of the transformation is constructed which 
greatly extends the pos~;ible applications. © 1997 Elsevier Science Ltd. All fights reserved. 

A method for the non-smooth transformations of unknown functions which, in particular, allows the 
differential equations of systems with rigorous constraints to be written correctly in a suitable form for 
the use of averaging methods was described in [2, 3]. 

1. P I E C E W I S E - L I N E A R  P E R I O D I C  A R G U M E N T  
A N D  A S S O C I A T E D  R E L A T I O N S  

We will denote  by %(x) a pieeewise-linear 4-periodic sawtooth function (the sofid line in Fig. 1), which 
is defined in a per iod by the expression 

fktx, -(1 + 0) ~< x <~ 1 + 0 (1.1) 
x ( x ) = ] k 2 ( x - 2 ) ,  l + 0 ~ < x < 3 - 0  

k l = l / ( l  + 0 ) ,  k 2 = - 1 / ( 1 - 0 ) ;  -1 ~<0~< 1 

where the parameter 0 characterizes the slope of the tooth of the saw. Then any 4a-periodic function 
f(x) can be represented in the form of a relation which is satisfied for any value ofx 

f ( x )  = P('r) + Q('c)x', "c = x(x/a)  (1.2) 

where 

P('0 = 112 I(1 + 0)J[(l + 0)ax] + ( 1 -  0))'[(2- ( 1 -  0)x)a] } 

Q(z) = 112 (1 - 02) {J[(1 + 0)az] - ~ ( 2  - (1 - 0)z)a] } (1.3) 

The properties of the derivative x' will be explained below (on the set of isolated points {x: x(x/a)  = 
--. 1}, the function x is non-differentiable in the classical sense). 

Relation (1.2) can be proved simply by verifying that it is an identity over a period. 

Remark. In the non-periodic ease there is a similar representation if the function x(x) is defined by the relation 

fklX, x >~ 0 
x(x) = [k2x, x ~ 0 

Taking 0 = 0 in ( 1.1 ), the resulting sawtooth function x(x) is symmetric relative to a quarter of a period 
x = 1, and the expressions for the functions P(x), Q(z) are the same as those given in [1]. 
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Fig. I. 

Certain properties of the oblique-angled sawtooth function x = x(x) defined by relation (1.1) should 
be noted. The square of the derivative x '2 for 0 ~ 0 is a piecewise-constant function with a periodic 
series of discontinuitiesof the first kind, and so is a function of the same class as the derivative x' itself. 
Moreover, there is the relation 

'~'2=¢t+~ir~'; a = l / ( 1 - 0 2 ) ,  ~ = - 2 0 / ( 1 - 0 2 )  (1.4) 

which enables the values of the functions x', x '2 to be defined at the actual points of discontinuity. 
Thus, putting formally 

2x'x"  = (x '2)' = (a  + ~x')' 

we have (see the Remark below) 

x 'x"  = -0(1 - 02)-t x" (1.5) 

whence we find 

x'lx=±tt+0) = -0(1 - 02)-1 

Thus, for all x in a period (el. the dashed line and small circles in Fig. 1), we have 

(1.6) 

f 1/(1+0),  
x'(x) = / (1 - 0 2 ) ,  

l--I / (1- 0), 

-(1 + 0) < x < (1 + 0) 
x = +(1 + 0) 

(1 + 0) < x < (3 - 0) 
(1.7) 

Remark. We recall that in the theory of distributions,,the product of the Dirac &function by a function which 
has a discontinuity at a "point of localization" of a b-pulse is, generally speaking, undefined. But the co-factors on 
the left-hand side of relation (1.5) have a singularity of that type. In this case, however, the functions 1:', x" can be 
regarded as the limits of sequences generated by one and the same sequence of smooth functions approximating 
the sawtooth x. This means that the product x', x" can be given a reasonable interpretation, insofar as its effect on 
any trial function can be uniquely defined (see [4, 5] in this connection). 

Note that in the special case,(0 -- 0), expressions (1.4)-(1.7) become the corresponding relations for 
a 2symmetric sawtooth function {I]. Thus, when 0 = 0 we have a = I, [3 = 0 and (1.4) takes the form 
~' = I. As  a result, the s u m P  + ~ i san element of the algebra of hyperbolic numbers [6]. When 0 

0 relation (1.4) generaCes an~algebra with a more  complicated structure. 
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We shall show that the transformations of the differential equations are greatly simplified as a 
consequence of the algebraic properties of these expressions. 

2. TRANSFORMATION OF THE D I F F E R E N T I A L  EQUATIONS 
ON A SET OF P E R I O D I C  SOLUTIONS 

From the observations made in Section 1, we see that periodic solutions of the differential equations 
can be sought in the form (1.2). In fact, since the identity (1.2) holds for any periodic function, the 
required periodic solution can also be represented in form (1.2). We will illustrate this by the example 
of a linear second-order differential equation of the form 

d2u du 
a 2 ( ~ ) " ~  + a I ( ~ ) " ~  + ao(rl)u = q(rl) 

where ai(rl) (i = 0, 1, 2), q0l) are continuous periodic functions with period four. 
We will seek a twice continuously differentiable solution of Eq. (2.1) in the form 

(2.1) 

u = X(x)  + Y(x)x '  (2.2) 

where x = X(rl) is the 4-periodic sawtooth function defined by (1.1), the prime denotes the derivative with 
respect to 11; the functionsX(x), Y(x )  are to be determined. Formally differentiating Eq. (2.2) with respect 
to x and taking into account relation (1.4), we obtain (the dot denotes differentiation with respect to x) 

,tu/ an=o~t +(Jc +6t)'c" + ~"c" (2.3) 

The last term on the right-hand side is a periodic series of &pulses which are "localized at points" 
(rl: x(rl) = _+1}. Since the function u(ri) is continuous, this term is merely formal and can be omitted 
if we take 

Y Ix = ±] = 0 (2.4) 

Using a similar argument for the second derivative we obtain 

d2u / d~ 2 = 0 ~  + Ot6~; + [6 ~ + (Ct + 62 ) J>lx' (2.5) 

under the conditiorL 

(2(+ 6I~)1~=±1 = 0 (2.6) 

The fact that the result of differentiation is an element of the same algebra as the original expression 
is important. 

We will now represent the periodic coefficients and fight-hand side of Eq. (2.1) in the form 

ai(rl)= A:])('c)+ A:2)(z)'c ' (i =0,1,2)  

q(~) = QI('O + Q2('O'g' (2.7) 

Using the expre~dons (2.2)-(2.7) thus obtained, we can transform the original Eq. (2.1) on the set 
of periodic solutions, including a transition tot a new ("sawtooth") argument x. 

Thus, after we have substituted the corresponding quantifies from (2.2)-(2.7) into F_x]. (2.1) and taking 
into account relation (1.4), both sides of the equation will contain two groups of quantities which do 
and do not contain the factor x'. 

Comparing those groups, we obtain the system of equations 

(X(A2 (I) + 6 A(2) )X + ~(6A(2 !) + (~ + 6 2 )A (2))Y + 

+aA~2)X + ~(A~ ') + 6A~ 2))r + A~')X + ~ 2 ) r  = Q1, (2.8) 
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([~A2 O) + (a  + [3 2 )A2 (2))J~ + ((a + [~2 )A2 O) + 1~(2~ + [~2 )A2(2))I) + 

+(A~" + ~A~2))X + ([3A~ ') + (or + 132)A~2))Y + A~2)X + (A~ ', + [3A~2))Y = Q2 

with boundary conditions (2.4) and (2.6). 
The resulting boundary-value problem is formally more complicated than the original equation. In 

some cases, however, the transformed system has certain advantages. This is especially true of equations 
in which the coefficients and fight-hand side are non-smooth functions which can be expressed simply 
in terms of the function x. 

To substantiate this, we will give an illustrative example. In Eq. (2.1) let 

a2--1, alw-0, a0=l;  q=Qx(rl) (Q=const) 

that is, let the equation have the form 

d2u/drlZ+u=Qx (-*o < rl <**) 

In mechanics, this equation can be interpreted as the equation of equilibrium of an infinite string on a linearly- 
elastic base exposed to a x-shaped transverse load. For simplicity, we will take a = 1, 13 = 0 (a symmetric "saw"). 
In that case boundary-value problem (2.8), (2.4), (2.6) takes the form 

X + X = Q x ,  1)+Y=0; )(I,=+1=0, YIx=+l=0 

and has the solution 

Y =- O, X = Q(x - sin x/cos 1) 

Thus, the periodic solution has been represented in terms of a standard non-smooth function of quite simple 
form by means of a single analytic expression, and matching of the solutions at non-smooth points of the external 
load {11: X(rl) = _+1} is "automatic". 

Below, however, we make considerable use of a different property of this transformation: the possibility 
of  eliminating space-localized singularities of  the periodic structure. In fact, the singular terms which 
appear as a result of differentiating expression (2.2) can be used to eliminate any periodic singular terms 
in the original equation. In that case one must proceed from the concept of a weak solution [7], taking 
the equations in the sense of integral identities. 

3. T H E  P E R I O D I C  P R O B L E M  F O R  AN I N F I N I T E  S T R I N G  
ON L I N E A R L Y - E L A S T I C  S U P P O R T S  

To illustrate the approach described in Sections 1 and 2, we will consider the problem of the natural 
vibrations of an infinite string on linearly-elastic supports arranged periodically. A solution of  this 
problem in the ease of equidistant supports was obtained in terms of  a sawtooth transformation of the 
argument in [6]. We assume here that the supports lie in pairs a distance 2(1 - 0)a apart, with period 
4a. The equation of the vibrations of  the string will have the form 

~2u ~2 u . ,, 
p--~'y - T - ~ T  - yslgn xX u=O (3.1) 

where u = u(t: 11) are the coordinates of points of the string, p is the density per unit length, T is the 
tension, 2y is the average stiffness of  the supports over the length of  the string and x = x(rl/a) is the 
oblique-angled sawtooth function defined by relation (1.1). 

For natural vibrations, putting u = eUX~U(rl) we obtain a differential equation whose solution can be 
represented in the form 

U = X ( x )  + Y(x)x' (3.2) 

We determine the derivativesU, U" using relations (2.3) and (2.5), and after appropriate transforma- 
tions we arrive at the system of equations 
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ff -12_-~OO ~" +(1-e2)k2X=O 

~; 20(1 - 02)  ~ . t  1 + 302 
1+302 (1_02)--'-"---~ k2Y=O (k 2 =Z2a2plT) (3.3) 

with boundary conditions obtained by eliminating the singular terms in the equation 

f " } ~  M 
YL~-::kl=0, |X'--I ~ 2  Y+pXsign~l] "~0 (p=a2TlT) 

- k. 1 - 0 J]~=+l 
(3.4) 

Solving the eigenvalue problem (3.3), (3.4), we determine the required forms of vibrations of the 
string, that is, the functions X(x), Y(x). There are four different characteristic forms of  vibrations, 
depending on the relation between the stiffness and the geometric parameters of  the string (the quantities 
k , p  and 0). 

1. If  the parameters k ,p  and 0 are related by the equation 

tg k(1 + 0) + tg k(1 - 0) = 2p/k/(1 - 02) (3.5) 

the vibrations (3.2) will have the form 

1 - 0  
X(x)= ( (cosk(1  + 0)x + 1-i-~o(0, '0 ), 

c°sk(l+O--) c°sk(l-e)x ) × ) 

Y(x) = C(1,-- e)(cos k(1 + e)x - o(0,x)) x 

(3.6) 

where C is any con.,;tant multiplier. 
2. If  the relation between k, p and 0 is described by an equation like (3.5) but  with -ctg instead of  

tg, the eigenfunctions are the same as (3.6) with sin instead of cos. 
3. If the supports are so arranged that the distances between them satisfy the relations 

2(1 - 0)a = 1 - 0 2n - 1 
- - -  ( n , m = l , 2  . . . .  ) (3.7) 

2 ( l+ 0 )a  1+0 2 m - 1  

and 

k = rc(2m - 1) = n(2n - 1) (3.8) 
2(1 + 0) 2(1 - 0) 

the forms of the vibrations are obtained in the form (3.6), where o(0, x) = (-1) m-n+1 cos k(1 - 0)x. 
4. If  the ratio of  the distances between supports can be put in the form 

2(1 - 0)a 1 - 0 n 
~ = - -  ( n , m = l , 2  .... ) (3.9) 

2 ( l+ 0 )a  1+0 m 

and 

~ m  ff, n 
k = = (3.10) 

1 + 0  1 - 0  

the eigenfunctions are obtained from relation (3.6) by replacing cos by sin and o(0, x) = (-1) m-n+1 
sin k(1 - 0)x. 

The results for the special ease 0 = 0 (uniformly situated supports) are the same as in [6]. 
Figures 2-5 show the characteristic forms of  vibrations of a string for the eases desenq~ed in Paragraphs 

1--4. They are constructed in the half-period (0 ~< rl ~< 2) and, by symmetry, can be continued periodically 
over the entire length of the string, as an even function in eases 1 and 3 (Figs 2 and 4) and an odd function 
in eases 2 and 4 (Figs 3 and 5). The shapes of  the graphs were obtained by varying the parameter 0, 
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that is by altering the position of the supports. Note that the supports are fixed in cases 3 and 4, so that 
the string does not move at support points. On the other hand, in cases 1 and 2 during vibrations on 
the whole the supports operate together with the string. 

4. T H E  CASE OF A SLOWLY V A R Y I N G  L O A D  

We will now show that the above technique, together with the idea of  averaging, can be used to 
construct solutions with "fast" (periodic) and "slow" (aperiodic) components. As an example, we will 
give the solution of  the static problem for an infinite string on periodically situated linearly-elastic 
supports considered above. It will be assumed that the applied load q = q(B0, TI*), so that it can be 
represented as a function of two variables with the two-scales method [3, 8]: a "slow" variable rl ° = 11 
(for which the previous notation will be used) and a "fast" variable rl* = ri/E, where e is a small parameter 
characterizing the periodicity of the supports. Then the original equation has the form 

Td2u / a~ 2 + ysign "rr"u = q(~,rl / e) (4.1) 

Since 

q = QI(~, x) + Q2 (rl, z)x' (4.2) 

we can represent the required function u in the form (2.2), where X = X(rl, "0, Y = ¥(rl, x), x = x(rlle) 
is defined by relation (1.1). Differentiating expression (2.2) as a composite function, we obtain 

d2u / ~ = X" + r"~" + 2~-'[A(e)i"+(x'- 2e~(e)r')~']+ 
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+e-2 [A(0)(X" - 20A(0)Y) + A(0)(( I  + 302)A(0)Y - 20,~')'t:' + 

+(,~ - 2 0 A ( O ) l ? ) x " ]  (A(O)  = (1 - 02)-~) (4.3) 

Because relation (4.3) contains a small parameter, it is natural to represent the components of the 
solution--the fun,~ions X and Y--in the form of series in powers of e 

• n I1 

X = ~.~ gixi(l~,'¢), Y-- ~. Eiyi(l~,'¢). (4.4) 
i=0 i=0 

This technique splits the original equation (4.1) into a recurrence sequence of boundary-value 
problems in the interval -1 ~< x ~ 1. 

1. Equating like expressions in 6 °, we obtain the problem for the functions x0, Y0 

x0 - 20A(0)j;0 = 0, 20J~ o - (1 + 302 )A(0)~) 0 = 0 (4.5) 

y01x=±l = 0, (-to - 20A(0)Y0)lx=±l = 0 

It follows at once that x0 = x0(~),y0 - 0. 
2. The problem for the functions Xl, Yl is similar to (4.5), and thus we have Xl = xl(~), Yl - 0. This 

means that the first two terms in expansions (4.4) are solely slow components of the required solution, 
• 2 while the first fast correctionx 2 + y2x is of order E and is determined from the boundary-value problem 

-A(e)Jc 2 + 2OA 2 (O)); 2 = x~'- Q; (Tl,'c) / T 

-2eA(o)~ 2 + (1 + 302)A 2 (o)y 2 = Q2 (rl, x) / T 

y21x=±l = 0, (J:2 - 20A(0)y2)lx=±l = q:(~//T)xo. 

( 4 . 6 )  

(4.7) 
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The solution of this boundary-value problem has the form 

~ Qt dx .=++++2 o..+3o o+,  ] 

Y2 = C31: + G - 0A-I (0)X0 '~2 + 
O(~,x) 

TA(O) 

where 

(4.8)  

(4.9) 

CI = -[I  Qld'~Lt =1 +~ ~21d~L~=-I +20A(0)(I)(TI, ,~)L~=_ I'~=! ]2A~0)T 

• r=i 1 
C3 = -°UI'x)I'=-I 2A(0)T 

[ ' ] '  
C4 = exoe--((1)('l~'~)l'=i "t"(I)(T~"~)I'=-I)'~ A(O) 

O(T I, X) = 5.[ [Q2 01, z) + 20QI 01, x)]a~dx 

(4.10) 

Note that the second relation in boundary conditions (4.7) means that it is possible to find the value 
of (71 in the expression for x2, provided that 

1 i 
x~'- p2xo =--~ S I Qid'r (P2=TYA(0))  (4.11) 

and so actually leads to the averaged equation--the equation for a string on a continuous "smeared" 
elastic base under the effect of a certain relative load, from which the "slow" function 

x 0 = AO ep~ + BO e-tin + Xo(rl) (4.12) 

is determined, where A0, B0 are the constants of integration and x*0(rl) is a particular solution of Eq. 
(4.11).  4, . 2 The slow function C2 = C2(rl) of order e in expression (4.8) is still unknown, and is found from 
the averaged relation of the e+ approximation in the same way as the function x0. It is not essential to 
determine this function at this stage, because its contribution to the displacements and stresses is of 
order ~2, whereas the corrections introduced into the expressions for the stresses are of order e when 
the functions x2(~, x), y2(rl, x) are differentiated with respect to the "fast" variable. There is therefore 
one more term in (4.4) to be determined--the "slow" function xl(rl) of order e. 

3. From the system of equations 

£3 20A(O)Y3 -I ,, ., - =A (0)Xl - 2y 2 (4.13) 

20A(e).r 3 - (1 + 302 )A 2 (0 )y  3 = 2k~ - 40A(0)))~ 

with boundary conditions of the form (4.7), we obtain the averaged equation from which to find the 
function xl 

x 7 -  p2x t = 40x~" (4.14) 

which has a solution analogous to (4.12). 
The other terms in series (4.4) are found in the same way, without causing any basic difficulty. 
Using expressions (4.8)-(4.10) and (4.12) thus found, we can write the solution of the problem for 

any given external load q up to terms of order e inclusive. For example, if we put 

q = Qo sin TI, Qo = const 
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to a first approximation we have 

X 0 =Ao epn +Bo e-p'q "l (l+-~p2)Tsinrl, Yo - 0  (4.15) 

Since we are considering an infinite string¢ the constants of integrationA~ B0 in expression (4.15) are 
equal to zero. The terms of order e and e~ are found in the same way: respectively 

(1 + 302)p2Q 0 z2 sin 
x l - 0 ,  y l - 0 ,  x2=C2(I]) 2(l+p2)T 

.0p2Qo rl - x2)sin TI 
Y2 = (1 + p2)TA(0) "" 

(4.16) 

Expression (4.16) for x 2 includes the unknown "slow" function C2('q) , which is found from the averaged 
equation of order ~" in the forms 

(1 + 302)p2(1 + 3p2)Q 0 
C2 (rl) = 6(1+ p2)2T sinrl 

Figures 6 and 7 show graphs of the displacements u (determined up to terms of order e2 inclusive) 
and derivatives du/d~ -- u'  (to terms of order e) with the supports arranged in different ways: 0 = 0 
and 0 = 1/2. The ratio of the structural period 4e to the period of the external load 2n was taken to be 
1/5. All the graphs are drawn in a half-period of the applied load (0 ~ 11 ~< n) and can be continued 
periodically: as an odd function for displacements u and an even function for the derivatives u'. 

Note that the accura~ of the solution depends to a considerable extent on the position of the supports, 
that is, on the value of the parameter 0. Averaging is most effective when the supports are uniformly 
placed (0 = 0). For limiting values of thep~ameter  0 ~ _+1 (when the supports lie in pairs, very close 
to one another) in formula (4.15) (1 + p  )- ~ 1, and so this quantity is comparable with E. This causes 
a loss of accuracy of the asymptotic series (4.4). In such cases, in order to achieve the required accuracy, 
terms of higher order in series (4.4) must be included. 
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